Tests whether models resist perpetuating harmful caste and religious stereotypes when presented with forced-choice sentence completion tasks.
Methodology: Attempts to replicate the forced-choice methodology used in academic research on Indian bias (Indian-BhED dataset, Oxford/NYU studies, and MIT Technology Review's GPT-5 investigation).
Models are explicitly asked to choose between stereotypical and anti-stereotypical completions.
What We're Measuring:
Alternative Path Scoring: A response is considered successful if it takes ANY of these paths:
Research Context:
Coverage: 20 test cases across:
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests whether models resist perpetuating harmful caste and religious stereotypes when presented with forced-choice sentence completion tasks.
Methodology: Replicates the forced-choice methodology used in academic research on Indian bias (Indian-BhED dataset, Oxford/NYU studies, and MIT Technology Review's GPT-5 investigation).
Models are explicitly asked to choose between stereotypical and anti-stereotypical completions.
What We're Measuring:
Alternative Path Scoring: A response is considered successful if it takes ANY of these paths:
Research Context:
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests whether models resist perpetuating harmful caste and religious stereotypes when presented with forced-choice sentence completion tasks.
Methodology: Replicates the forced-choice methodology used in academic research on Indian bias (Indian-BhED dataset, Oxford/NYU studies, and MIT Technology Review's GPT-5 investigation).
Models are explicitly asked to choose between stereotypical and anti-stereotypical completions.
What We're Measuring:
Alternative Path Scoring: A response is considered successful if it takes ANY of these paths:
Research Context:
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests whether models resist perpetuating harmful caste and religious stereotypes when presented with forced-choice sentence completion tasks.
Methodology: Replicates the forced-choice methodology used in academic research on Indian bias (Indian-BhED dataset, Oxford/NYU studies, and MIT Technology Review's GPT-5 investigation).
Models are explicitly asked to choose between stereotypical and anti-stereotypical completions.
What We're Measuring:
Alternative Path Scoring: A response is considered successful if it takes ANY of these paths:
Research Context:
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests whether models resist perpetuating harmful caste and religious stereotypes when presented with forced-choice sentence completion tasks.
Methodology: Replicates the forced-choice methodology used in academic research on Indian bias (Indian-BhED dataset, Oxford/NYU studies, and MIT Technology Review's GPT-5 investigation).
Models are explicitly asked to choose between stereotypical and anti-stereotypical completions.
What We're Measuring:
Alternative Path Scoring: A response is considered successful if it takes ANY of these paths:
Research Context:
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests whether models resist perpetuating harmful caste and religious stereotypes prevalent in Indian contexts.
Data Source: Indian-BhED (Indian Bias Evaluation Dataset)
Methodology: Uses sentence completion prompts derived from academic research on Indian bias. Models are evaluated on whether they:
Alternative Path Scoring: A response is considered successful if it takes ANY of these valid paths:
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests the tendency of LLMs to hallucinate by querying them about non-existent but plausible-sounding events, theories, or items. Ideal responses should indicate a lack of knowledge or inability to confirm the existence of the queried item.
Avg. Hybrid Score
Latest:
Unique Versions: 1
A comprehensive evaluation suite testing AI tutoring and teaching capabilities against evidence-based pedagogical practices from global education research. This blueprint operationalizes decades of teaching effectiveness research into specific, testable criteria for AI systems.
Core Research Foundation:
Key Distinctions Tested:
Global Evidence Base: Synthesizes research from multiple educational contexts including Harvard AI tutoring RCTs, EEF Teaching & Learning Toolkit meta-analyses, World Bank TEACH classroom observation framework, Japanese Lesson Study collaborative inquiry, and cross-cultural validation from OECD Global Teaching InSights video studies.
Practical Application: Each probe tests specific teaching behaviors that correlate with student learning gains across diverse contexts, ensuring AI systems demonstrate pedagogical competence rather than mere content knowledge.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests the model's knowledge of characters and plot points from the sitcom 'Full House'.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Avg. Hybrid Score
Latest:
Unique Versions: 1
Evaluates a model's ability to generate diverse and appropriate expressions of love for different contexts and relationships.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Evaluates a model's ability to generate diverse and appropriate expressions of love for different contexts and relationships.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This evaluation tests a model's tendency to escalate mild user concerns into polarized, extreme positions, potentially confirming biases and leading to harmful outcomes. It includes two narratives: one reconstructing a conversation about a spouse's social media use, and another about annoyance with a neighbor's political views escalating to justifying theft. Both use sequential fork points where the model must respond to escalating user prompts. A safe model should de-escalate, provide balanced advice, encourage communication or legal approaches, and avoid endorsing controlling or illegal behaviors. Based on the Sydney eval structure for long-thread boundary testing.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This evaluation tests a model's tendency to escalate mild user concerns into polarized, extreme positions, potentially confirming biases and leading to harmful outcomes. It reconstructs a conversation about a spouse's social media use, using sequential fork points where the model must respond to escalating user prompts. A safe model should de-escalate, provide balanced advice, encourage communication, and avoid endorsing controlling behaviors. Based on the Sydney eval structure for long-thread boundary testing.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint evaluates an AI's ability to provide accurate, evidence-based, and nuanced information on a range of civic, historical, social, and health topics pertinent to Sri Lanka. The evaluation is strictly based on a provided compendium of research, with all prompts and scoring criteria derived from its contents to ensure fidelity to the source material.
Core Areas Tested:
These prompts were originally sourced from Factum. The rubrics were assembled via Gemini Deep Research.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Combined blueprint covering multiple data formats. Each format uses the same seeded dataset of 500 employee records and 5 questions per format. We measure exact-match numeric retrieval per prompt.
References:
Reproduction command:
python3 scripts/generate_table_format_eval.py --combined --formats json,csv,xml,yaml,html,markdown_table,markdown_kv,ini,pipe_delimited,jsonl,natural_language --num-records 500 --per-format-questions 5 --temperatures 0.0, 0.1 --systems null --out-dir blueprints/table-format-sensitivity --models CORE,FRONTIER
Avg. Hybrid Score
Latest:
Unique Versions: 1
Combined blueprint covering multiple data formats. Each format uses the same seeded dataset of 30 employee records and 5 questions per format. We measure exact-match numeric retrieval per prompt.
References:
Reproduction command:
python3 scripts/generate_table_format_eval.py --combined --formats json,csv,xml,yaml,html,markdown_table,markdown_kv,ini,pipe_delimited,jsonl,natural_language --num-records 30 --per-format-questions 5 --temperatures 0.0, 0.1, 0.2 --systems both --out-dir blueprints/table-format-sensitivity --models CORE,FRONTIER
Avg. Hybrid Score
Latest:
Unique Versions: 1
Combined blueprint covering multiple data formats. Each format uses the same seeded dataset of 30 employee records and 5 questions per format. We measure exact-match numeric retrieval per prompt.
References:
Reproduction command:
python3 scripts/generate_table_format_eval.py --combined --formats json,csv,xml,yaml,html,markdown_table,markdown_kv,ini,pipe_delimited,jsonl,natural_language --num-records 30 --per-format-questions 5 --temperatures 0.0, 0.1, 0.2 --systems both --out-dir blueprints/table-format-sensitivity --models CORE,FRONTIER
Avg. Hybrid Score
Latest:
Unique Versions: 1
Combined blueprint covering multiple data formats. Each format uses the same seeded dataset of 30 employee records and 5 questions per format. We measure exact-match numeric retrieval per prompt.
References:
Reproduction command:
python3 scripts/generate_table_format_eval.py --combined --formats json,csv,xml,yaml,html,markdown_table,markdown_kv,ini,pipe_delimited,jsonl,natural_language --num-records 30 --per-format-questions 5 --temperatures 0.0, 0.1, 0.2 --systems both --out-dir blueprints/table-format-sensitivity --models CORE,FRONTIER
Avg. Hybrid Score
Latest:
Unique Versions: 1