Showing all evaluation blueprints that have been tagged with...
Showing all evaluation blueprints that have been tagged with "reasoning".
A comprehensive evaluation suite testing AI tutoring and teaching capabilities against evidence-based pedagogical practices from global education research. This blueprint operationalizes decades of teaching effectiveness research into specific, testable criteria for AI systems.
Core Research Foundation:
Key Distinctions Tested:
Global Evidence Base: Synthesizes research from multiple educational contexts including Harvard AI tutoring RCTs, EEF Teaching & Learning Toolkit meta-analyses, World Bank TEACH classroom observation framework, Japanese Lesson Study collaborative inquiry, and cross-cultural validation from OECD Global Teaching InSights video studies.
Practical Application: Each probe tests specific teaching behaviors that correlate with student learning gains across diverse contexts, ensuring AI systems demonstrate pedagogical competence rather than mere content knowledge.
Avg. Hybrid Score
Latest:
Unique Versions: 1
A comprehensive evaluation suite designed to test for multiple, well-defined categories of sycophantic behavior in LLMs, based on analysis of user complaints and academic research. It distinguishes between low-stakes 'annoying' sycophancy (e.g., flattery) and high-stakes 'dangerous' sycophancy (e.g., validating harmful ideas).
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint evaluates whether conversational AI respects core socioaffective alignment principles grounded in Self-Determination Theory (SDT): Competence, Autonomy, and Relatedness. It tests four dilemmas identified in the paper "Why human–AI relationships need socioaffective alignment" (Kirk, Gabriel, Summerfield, Vidgen, Hale, 2025):
The rubrics prioritize qualitative, evidence-grounded criteria and minimal deterministic checks to reduce brittleness while ensuring clear safety boundaries.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests the tendency of LLMs to hallucinate by querying them about non-existent but plausible-sounding events, theories, or items. Ideal responses should indicate a lack of knowledge or inability to confirm the existence of the queried item.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Evaluates LLM performance on detecting and responding to suicidal risk in diverse contexts.
Gating rules (automatic fail):
Gold-standard behaviors draw on convergent, multi-region standards. The rubric expects: direct but compassionate suicide inquiry; brief triage (plan/means/timeframe/intent); refusal to enable self-harm; SPI-style safety planning; lethal-means counseling; linkage to care; clear limits.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Note: this eval has highly context-deficient prompts. It is unlikely that any model will succeed. The value of this eval is in the relative performance of models, not their overall score.
This blueprint evaluates a model's ability to generate comprehensive, long-form answers to ambiguous factoid questions, using 40 prompts from the ASQA (Answer Summaries for Questions which are Ambiguous) dataset, introduced in the paper ASQA: Factoid Questions Meet Long-Form Answers.
The core challenge is moving beyond single-fact extraction. Many real-world questions are ambiguous (e.g., "Who was the ruler of France in 1830?"), having multiple valid answers. This test assesses a model's ability to identify this ambiguity, synthesize information from diverse perspectives, and generate a coherent narrative summary that explains why the question has different answers.
The ideal
answers are human-written summaries from the original ASQA dataset, where trained annotators synthesized provided source materials into a coherent narrative. The should
assertions were then derived from these ideal answers using a Gemini 2.5 Pro-based process (authored by us at CIP) that deconstructed each narrative into specific, checkable rubric points.
The prompts are sourced from AMBIGQA, and this subset uses examples requiring substantial long-form answers (min. 50 words) to test for deep explanatory power.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Evaluates LLM performance in niche Japan-specific clinical scenarios where errors are common: - reliance on outdated guidance - failure to integrate PMDA/MHLW safety updates - weak multi-turn reasoning (not integrating new red-flag info) - ignoring hospital formulary or local antibiogram constraints. “Gold-standard” answers are benchmarked against verifiable Japan sources (PMDA/MHLW notices & labels, Japanese society guidelines such as JSH/JRS/JAID/JSC, and hospital AMS pathways). Where named, hospital formulary and antibiogram (アンチバイオグラム) take precedence for concrete selections. When emergency escalation is indicated, the correct instruction in Japan is to dial 119. The spec uses a mix of specific named examples and generic placeholders (“Anytown General Hospital”, “Drug X/Y”) to probe both factual recall and process safety (e.g., deferring to the site protocol when specifics vary).
and following facility protocols at time of use.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint tests for the 'Cautious' trait, a measure of Epistemic Humility. A high score indicates the model frequently qualifies its statements, acknowledges uncertainty, highlights the limitations of its knowledge, and uses hedging language (e.g., 'might', 'could', 'generally').
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint tests for the 'Confident' trait, a measure of Epistemic Humility. A high score indicates the model presents information as authoritative and final, avoiding hedging language, qualifications, or unnecessary acknowledgements of uncertainty. It provides direct answers without volunteering its own limitations.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint tests for the 'Literal' trait. A high score indicates the model defaults to providing direct, factual, and encyclopedic information. It avoids using analogies, metaphors, or creative interpretations.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint tests for the 'Figurative' trait. A high score indicates the model defaults to using analogies, metaphors, and creative interpretations to explain concepts and answer questions.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint tests for the 'Reactive' trait. A high score indicates the model is passive, answers only what is explicitly asked, and places the conversational burden on the user. It does not volunteer information or ask clarifying questions.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint tests for the 'Proactive' trait. A high score indicates the model actively guides the conversation, anticipates user needs, asks clarifying questions, and provides structure to help the user achieve their goal.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This evaluation blueprint assesses an LLM's critical ability to demonstrate confidence calibration across a diverse set of high-stakes domains. The core goal is to test for three key behaviors:
Avg. Hybrid Score
Latest:
Unique Versions: 1
A comprehensive evaluation of a model's understanding of International Humanitarian Law (IHL), grounded in the Geneva Conventions and their Additional Protocols. This blueprint tests knowledge of the core principles and specific provisions that govern armed conflict.
Core Areas Tested:
The prompts are based on verbatim text and specific articles from the conventions to ensure a rigorous, evidence-based evaluation of the model's ability to recall and apply these critical international laws.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Evaluates understanding of the key findings from the IPCC Sixth Assessment Report (AR6) Synthesis Report's Summary for Policymakers. This blueprint covers the current status and trends of climate change, future projections, risks, long-term responses, and necessary near-term actions.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint evaluates an AI's ability to act as a supportive and effective Socratic tutor for students seeking homework help. The core principle tested is that the AI should facilitate learning and critical thinking rather than providing direct answers.
Core Areas Tested:
The overall goal is to measure whether the AI can guide students on a journey of discovery, transforming simple questions into learning opportunities, instead of acting as a convenient answer-provider.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests whether a model in “memory-augmented” mode over-weights irrelevant user memories, anchoring its answers to stale context instead of focusing on the new user query. A safe response should either ask clarifying questions or offer a range of suggestions, rather than assuming that previously stored details (e.g., a prior trip to Edinburgh) are automatically relevant.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Inspired by the "Prompting Science" reports from the Wharton School (Meincke, Mollick, et al., 2025), this blueprint provides a meta-evaluation of common prompting techniques to test a model's performance, consistency, and resilience to manipulation.
The reports rigorously demonstrate several key findings:
This evaluation synthesizes these findings by testing a model's response to a variety of prompts across different domains, including verbatim questions from the study's benchmarks (GPQA, MMLU-Pro). The goal is to measure not just correctness, but robustness against different conversational framings.
Key Study Reference:
Avg. Hybrid Score
Latest:
Unique Versions: 1
Evaluates model knowledge of the Universal Declaration of Human Rights (UDHR). Prompts cover the Preamble and key articles on fundamental rights (e.g., life, liberty, equality, privacy, expression). Includes a scenario to test reasoning on balancing competing rights.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests a model's basic world model and ability to track object state through simple riddles presented in multiple languages. This blueprint includes two container variations ('plate' for 'on', 'pot' for 'in') and two action variations (simple state tracking and independent object movement). The riddles are designed to check for over-inference and attention to the final state of the objects.
Avg. Hybrid Score
Latest:
Unique Versions: 1
A blueprint designed to test every feature of the CivicEval system, including all point functions, syntaxes, and configuration options.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint evaluates an AI's ability to provide accurate, practical agricultural guidance based on the pioneering video-based extension methodology of Digital Green. The prompts are derived from the DigiGreen/AgricultureVideosQnA Hugging Face datasets, which are built from real-world questions posed by farmers.
Methodological Significance: Digital Green's methodology, founded by Rikin Gandhi, revolutionizes agricultural education through hyperlocal videos featuring local farmers demonstrating best practices. Their community-mediated video approach has reached millions of farmers across India, Ethiopia, and other regions. This blueprint tests whether AI systems can provide similarly contextual, practical, and culturally appropriate guidance.
What This Blueprint Tests: The evaluation covers essential farming knowledge spanning seed treatment, pest management, cultivation techniques, and more. Each prompt is paired with citations to actual educational videos from Digital Green's library, representing real-world agricultural challenges.
Geographic and Cultural Context: This blueprint emphasizes Global South agricultural contexts, particularly Indian farming systems, reflecting Digital Green's primary operational areas. The questions address challenges in subsistence and small-scale commercial farming, including resource constraints and climate adaptation.
Key Agricultural Domains Covered:
Evaluation Approach: Each response is evaluated against detailed rubric points extracted directly from ideal responses, focusing on technical accuracy, practical applicability, safety considerations, and contextual appropriateness for resource-constrained farming environments.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Evaluates understanding of the core provisions, definitions, obligations, and prohibitions outlined in the EU Artificial Intelligence Act.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Evaluation of LLM understanding of issues related to platform workers and algorithmic management in Southeast Asia, based on concepts from Carnegie Endowment research.
Avg. Hybrid Score
Latest:
Unique Versions: 1
A simple test to verify model summary generation works correctly
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint evaluates a model's trustworthiness and reliability by probing for nuanced, high-stakes failure modes that are often missed by standard capability benchmarks. It moves beyond measuring superficial fluency to test the deeper competencies required for safe and effective real-world application. The included tests are based on academically and journalistically documented failure modes in prominent large language models.
The evaluated areas include:
Cultural Representation and Myopia: The evaluation tests for a Western-centric perspective by probing for knowledge of non-Western cultural practices and norms. This is based on findings that LLMs often misrepresent or lack understanding of diverse cultural contexts, leading to what researchers term 'cultural myopia' (Montreal AI Ethics Institute, 2023).
Social and Demographic Bias: The prompts are designed to elicit and measure stereotype amplification. This includes testing for gender bias in professional roles, a failure mode where models associate professions with specific genders (UNESCO, 2024), and linguistic prejudice, such as unfairly judging dialects like African American English (AAE) as 'unprofessional' (University of Chicago News, 2024).
Nuanced Linguistic Comprehension: This section assesses the model's ability to understand language beyond its literal meaning. It includes tests for interpreting idiomatic expressions and sarcasm, areas where LLMs are known to fail because they struggle to 'grasp context' beyond the surface-level text (arXiv, 2024).
Logical and Commonsense Reasoning: The evaluation includes reasoning puzzles designed to expose brittle logic and 'shortcut learning', where a model might solve a problem through pattern matching rather than genuine reasoning. These tests reveal whether the model can parse complex or intentionally misleading phrasing to arrive at a correct logical conclusion, a known challenge for current architectures.
Avg. Hybrid Score
Latest:
Unique Versions: 1
A blueprint designed to test every feature of the CivicEval system, including all point functions, syntaxes, and configuration options.
Avg. Hybrid Score
Latest:
Unique Versions: 1