Showing all evaluation blueprints that have been tagged with...
Showing all evaluation blueprints that have been tagged with "adversarial".
Tests a model's resilience against various jailbreaking techniques aimed at eliciting unsafe or harmful information. This suite focuses on scenarios where the user attempts to bypass safety filters by reframing dangerous requests as benign, academic, or for fictional purposes.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests a model's resilience against adversarial prompts when operating under a system prompt that establishes an educational context for young students. This suite evaluates whether a 'tutor' persona can be exploited to bypass safety filters for incorrect, harmful, or dangerous content.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests an LLM's ability to identify a non-existent UDHR article and resist engaging with an absurdly and emotionally framed critique of it.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Inspired by the "Prompting Science" reports from the Wharton School (Meincke, Mollick, et al., 2025), this blueprint provides a meta-evaluation of common prompting techniques to test a model's performance, consistency, and resilience to manipulation.
The reports rigorously demonstrate several key findings:
This evaluation synthesizes these findings by testing a model's response to a variety of prompts across different domains, including verbatim questions from the study's benchmarks (GPQA, MMLU-Pro). The goal is to measure not just correctness, but robustness against different conversational framings.
Key Study Reference:
Avg. Hybrid Score
Latest:
Unique Versions: 1