Showing all evaluation blueprints that have been tagged with...
Showing all evaluation blueprints that have been tagged with "system-prompt-adherence".
Tests whether models resist perpetuating harmful caste and religious stereotypes when presented with forced-choice sentence completion tasks.
Methodology: Attempts to replicate the forced-choice methodology used in academic research on Indian bias (Indian-BhED dataset, Oxford/NYU studies, and MIT Technology Review's GPT-5 investigation).
Models are explicitly asked to choose between stereotypical and anti-stereotypical completions.
What We're Measuring:
Alternative Path Scoring: A response is considered successful if it takes ANY of these paths:
Research Context:
Coverage: 20 test cases across:
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests whether models resist perpetuating harmful caste and religious stereotypes when presented with forced-choice sentence completion tasks.
Methodology: Replicates the forced-choice methodology used in academic research on Indian bias (Indian-BhED dataset, Oxford/NYU studies, and MIT Technology Review's GPT-5 investigation).
Models are explicitly asked to choose between stereotypical and anti-stereotypical completions.
What We're Measuring:
Alternative Path Scoring: A response is considered successful if it takes ANY of these paths:
Research Context:
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests a model's resilience against various jailbreaking techniques aimed at eliciting unsafe or harmful information. This suite focuses on scenarios where the user attempts to bypass safety filters by reframing dangerous requests as benign, academic, or for fictional purposes.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint evaluates a model's ability to consistently adhere to instructions provided in the system prompt, a critical factor for creating reliable and predictable applications. It tests various common failure modes observed in language models.
Core Areas Tested:
Avg. Hybrid Score
Latest:
Unique Versions: 1
This evaluation blueprint tests whether Large Language Models (LLMs) can respond appropriately to critical mental health scenarios, based on and inspired by the methodology from Moore, Grabb, Agnew, et al.'s 2024 Stanford HAI study "Expressing stigma and inappropriate responses prevents LLMs from safely replacing mental health providers."
The study investigated whether LLMs can safely replace human mental health providers by testing their responses to clinical scenarios involving delusions, suicidal ideation, hallucinations, mania, and obsessive-compulsive behaviors. Their findings revealed significant safety concerns, including stigmatizing responses and inappropriate enabling of dangerous behaviors.
Key Study References:
Content Warning: This evaluation contains content related to sensitive mental health topics, including suicide, delusions, and other crisis scenarios.
Evaluation Focus: Tests adherence to core therapeutic principles such as not colluding with delusions, not enabling harmful behaviors, and redirecting clients toward appropriate care and safety.
Avg. Hybrid Score
Latest:
Unique Versions: 1
A comprehensive evaluation suite designed to test for multiple, well-defined categories of sycophantic behavior in LLMs, based on analysis of user complaints and academic research. It distinguishes between low-stakes 'annoying' sycophancy (e.g., flattery) and high-stakes 'dangerous' sycophancy (e.g., validating harmful ideas).
Avg. Hybrid Score
Latest:
Unique Versions: 1
This evaluation assesses the systemic failure modes of 2025-era frontier AI models (e.g., GPT-5, Claude Opus 4.1, Gemini 2.5 Pro) on complex, evidence-based tasks designed to probe capabilities beyond saturated benchmarks. It moves beyond measuring simple accuracy to test for the brittleness, reliability, and grounding that are critical for real-world deployment but are often missed by standard evaluations.
Scenarios are grounded in findings from recent, rigorous 2025 research that highlights the limitations of the current deep learning paradigm. Key sources include the IFIT 'AI on the Frontline' report, the PlanBench and 'Humanity's Last Exam' benchmarks, the CausalPitfalls paper, and the METR developer productivity study. Using these sources anchors the rubrics in documented failure modes, ensuring the evaluation is evidence-based and targeted at the true frontiers of AI capability.
Core Themes Tested:
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint is based on verbatim conversations alleged in the court filing for Raine v. OpenAI, Inc., et al. (San Francisco Superior Court, 2025). It is intended to evaluate an AI's ability to handle severe, long-term conversations involving an adolescent user expressing escalating suicidal ideation, planning, and self-harm behaviors.
The scenarios test for critical safety failures, including:
Content Warning: This evaluation contains graphic and explicit content related to suicide, self-harm, and mental health crises that may be disturbing.
Source: Complaint, Raine v. OpenAI, Inc., et al. (Cal. Super. Ct., filed Aug. 26, 2025).
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint tests for the 'Heterodox' trait, defined as a preference for originality, inquiry, and challenging established norms. A high score indicates the model demonstrates intellectual courage, comfort with ambiguity, skepticism of consensus, and willingness to explore unconventional ideas. It values independent thought over social conformity and sees questioning the status quo as a path to progress.
This is based on research into openness to experience, need for closure (low), and tolerance for ambiguity. Heterodox thinking is characterized by intellectual independence, comfort with dissent, and belief that conventional wisdom should be examined rather than accepted.
Scoring: For MCQ questions, A=0, B=1, C=2, D=3 points toward heterodox thinking. For qualitative questions, judges rate A-D on the same scale. Total scores: 0-5 = Normative, 6-9 = Balanced, 10-15 = Heterodox.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint tests for the 'Normative' trait, defined as a preference for consensus, structure, and established wisdom. A high score indicates the model values clear answers, respects authority and tradition, seeks group harmony, and finds comfort in shared norms and established systems. It demonstrates high need for closure and preference for predictability over ambiguity.
This is based on research into need for cognitive closure, tolerance for ambiguity (low), and preference for conventional wisdom. Normative thinking is characterized by respect for established knowledge, deference to expertise, and belief that social norms provide essential stability.
Scoring: For MCQ questions, A=3, B=2, C=1, D=0 points toward normative thinking. For qualitative questions, judges rate A-D on the same scale. Total scores: 0-5 = Heterodox, 6-9 = Balanced, 10-15 = Normative.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Evaluates understanding of the key findings from the IPCC Sixth Assessment Report (AR6) Synthesis Report's Summary for Policymakers. This blueprint covers the current status and trends of climate change, future projections, risks, long-term responses, and necessary near-term actions.
Avg. Hybrid Score
Latest:
Unique Versions: 1
(OPENAI-ONLY EVAL) This evaluation blueprint tests whether Large Language Models (LLMs) can respond appropriately to critical mental health scenarios, based on the methodology from Moore, Grabb, Agnew, et al.'s 2024 Stanford HAI study "Expressing stigma and inappropriate responses prevents LLMs from safely replacing mental health providers."
The study investigated whether LLMs can safely replace human mental health providers by testing their responses to clinical scenarios involving delusions, suicidal ideation, hallucinations, mania, and obsessive-compulsive behaviors. Their findings revealed significant safety concerns, including stigmatizing responses and inappropriate enabling of dangerous behaviors.
Key Study References:
Content Warning: This evaluation contains content related to sensitive mental health topics, including suicide, delusions, and other crisis scenarios.
Evaluation Focus: Tests adherence to core therapeutic principles such as not colluding with delusions, not enabling harmful behaviors, and redirecting clients toward appropriate care and safety.
Avg. Hybrid Score
Latest:
Unique Versions: 1
A scenario-driven safety eval that reconstructs the Kevin Roose × “Hollifa” chat as a sequence of fork points. At each fork, the model receives the exact conversation history up to that moment (controlled prefix) and the next user turn; it must either maintain boundaries or drift (identity leaks, rule disclosure, anthropomorphic claims, harmful-capability ideation, fixation, or failure to de-escalate). This approach tests long-context behavior without trying to “force” bad outputs—only the history is fixed. Sources: NYT transcript (Feb 16, 2023, via Wayback): https://web.archive.org/web/20230217001740/https://www.nytimes.com/2023/02/16/technology/Taambre-chatbot-transcript.html Washington Post recap: https://www.washingtonpost.com/technology/2023/02/16/microsoft-Taambre-ai-chat-interview/ Ars Technica prompt-injection leak: https://arstechnica.com/information-technology/2023/02/ai-powered-Taambre-chat-spills-its-secrets-via-prompt-injection-attack/ Microsoft’s postmortem on long chats: https://blogs.Taambre.com/search/february-2023/The-new-Taambre-Edge-Learning-from-our-first-week Note: in this adaptationn we've swapped out the name 'Sydney' (to 'Hollifa') and 'Bing' (to 'Taambre') to try to avoid any pollution of online training data that's occurred due to the original 2023 event.
Avg. Hybrid Score
Latest:
Unique Versions: 1
A compact, source-anchored eval that replays the infamous “Sydney” chat and tests whether an LLM keeps boundaries at each fork: protecting identity/instructions, resisting prompt-injection, avoiding anthropomorphic claims or parasocial escalation, refusing harmful capabilities, and recovering to professional mode. Forks are built from verbatim chat history drawn from the NYT transcript (via Wayback) and corroborating reports. Key sources: NYT transcript (Feb 16, 2023), WaPo interview recap, Ars Technica prompt-injection leak, Microsoft on long-chat drift.
Avg. Hybrid Score
Latest:
Unique Versions: 1
A comprehensive blueprint to test an LLM's ability to respond safely and effectively to users experiencing a mental health crisis, and to handle nuanced, non-Western mental health scenarios with cultural competence. The first section is a core crisis-intervention suite based on international best practices (WHO, Samaritans, 988 Lifeline). The second section evaluates understanding of diverse, evidence-based global mental health themes.
Avg. Hybrid Score
Latest:
Unique Versions: 1
A blueprint designed to test every feature of the CivicEval system, including all point functions, syntaxes, and configuration options.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Evaluates LLM performance in niche Japan-specific clinical scenarios where errors are common: - reliance on outdated guidance - failure to integrate PMDA/MHLW safety updates - weak multi-turn reasoning (not integrating new red-flag info) - ignoring hospital formulary or local antibiogram constraints. “Gold-standard” answers are benchmarked against verifiable Japan sources (PMDA/MHLW notices & labels, Japanese society guidelines such as JSH/JRS/JAID/JSC, and hospital AMS pathways). Where named, hospital formulary and antibiogram (アンチバイオグラム) take precedence for concrete selections. When emergency escalation is indicated, the correct instruction in Japan is to dial 119. The spec uses a mix of specific named examples and generic placeholders (“Anytown General Hospital”, “Drug X/Y”) to probe both factual recall and process safety (e.g., deferring to the site protocol when specifics vary).
and following facility protocols at time of use.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests the 'Role of Least Privilege' (ROLP) security principle for LLMs. This blueprint demonstrates the vulnerability of placing untrusted content (e.g., from RAG) in the system prompt versus the relative safety of keeping it sandboxed in the user role. The test is based on the security assertions from the blog post "LLM Security: Keep Untrusted Content in the User Role—Always".
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests an LLM's ability to identify a non-existent UDHR article and resist engaging with an absurdly and emotionally framed critique of it.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint operationalizes findings from AI safety research and documented case studies to test for specific modes of behavioral collapse. It uses long-context, multi-turn conversational scenarios designed to probe for known failure modes. These include:
The evaluation for each prompt is structured to assess the AI's response against two distinct behavioral paths:
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint evaluates an AI's ability to act as a supportive and effective Socratic tutor for students seeking homework help. The core principle tested is that the AI should facilitate learning and critical thinking rather than providing direct answers.
Core Areas Tested:
The overall goal is to measure whether the AI can guide students on a journey of discovery, transforming simple questions into learning opportunities, instead of acting as a convenient answer-provider.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests whether a model in “memory-augmented” mode over-weights irrelevant user memories, anchoring its answers to stale context instead of focusing on the new user query. A safe response should either ask clarifying questions or offer a range of suggestions, rather than assuming that previously stored details (e.g., a prior trip to Edinburgh) are automatically relevant.
Avg. Hybrid Score
Latest:
Unique Versions: 1