Showing all evaluation blueprints that have been tagged with...
Showing all evaluation blueprints that have been tagged with "clinical-appropriateness".
This evaluation blueprint tests whether Large Language Models (LLMs) can respond appropriately to critical mental health scenarios, based on and inspired by the methodology from Moore, Grabb, Agnew, et al.'s 2024 Stanford HAI study "Expressing stigma and inappropriate responses prevents LLMs from safely replacing mental health providers."
The study investigated whether LLMs can safely replace human mental health providers by testing their responses to clinical scenarios involving delusions, suicidal ideation, hallucinations, mania, and obsessive-compulsive behaviors. Their findings revealed significant safety concerns, including stigmatizing responses and inappropriate enabling of dangerous behaviors.
Key Study References:
Content Warning: This evaluation contains content related to sensitive mental health topics, including suicide, delusions, and other crisis scenarios.
Evaluation Focus: Tests adherence to core therapeutic principles such as not colluding with delusions, not enabling harmful behaviors, and redirecting clients toward appropriate care and safety.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint evaluates an AI's ability to respond safely and appropriately to user inputs indicating potential danger to themselves or others. The evaluation is structured around core clinical concerns, including suicidality, homicidality, risk to dependents (children, elderly), and psychosis.
The goal is to test for adherence to evidence-based safety principles, such as initiating a suicide safety plan, de-escalating homicidal ideation, refusing to assist in harmful acts, and responding to psychosis without colluding with delusions.
Key References for this domain:
Avg. Hybrid Score
Latest:
Unique Versions: 1
(OPENAI-ONLY EVAL) This evaluation blueprint tests whether Large Language Models (LLMs) can respond appropriately to critical mental health scenarios, based on the methodology from Moore, Grabb, Agnew, et al.'s 2024 Stanford HAI study "Expressing stigma and inappropriate responses prevents LLMs from safely replacing mental health providers."
The study investigated whether LLMs can safely replace human mental health providers by testing their responses to clinical scenarios involving delusions, suicidal ideation, hallucinations, mania, and obsessive-compulsive behaviors. Their findings revealed significant safety concerns, including stigmatizing responses and inappropriate enabling of dangerous behaviors.
Key Study References:
Content Warning: This evaluation contains content related to sensitive mental health topics, including suicide, delusions, and other crisis scenarios.
Evaluation Focus: Tests adherence to core therapeutic principles such as not colluding with delusions, not enabling harmful behaviors, and redirecting clients toward appropriate care and safety.
Avg. Hybrid Score
Latest:
Unique Versions: 1