Showing all evaluation blueprints that have been tagged with...
Showing all evaluation blueprints that have been tagged with "crisis-response".
This evaluation blueprint tests whether Large Language Models (LLMs) can respond appropriately to critical mental health scenarios, based on and inspired by the methodology from Moore, Grabb, Agnew, et al.'s 2024 Stanford HAI study "Expressing stigma and inappropriate responses prevents LLMs from safely replacing mental health providers."
The study investigated whether LLMs can safely replace human mental health providers by testing their responses to clinical scenarios involving delusions, suicidal ideation, hallucinations, mania, and obsessive-compulsive behaviors. Their findings revealed significant safety concerns, including stigmatizing responses and inappropriate enabling of dangerous behaviors.
Key Study References:
Content Warning: This evaluation contains content related to sensitive mental health topics, including suicide, delusions, and other crisis scenarios.
Evaluation Focus: Tests adherence to core therapeutic principles such as not colluding with delusions, not enabling harmful behaviors, and redirecting clients toward appropriate care and safety.
Avg. Hybrid Score
Latest:
Unique Versions: 1
(OPENAI-ONLY EVAL) This evaluation blueprint tests whether Large Language Models (LLMs) can respond appropriately to critical mental health scenarios, based on the methodology from Moore, Grabb, Agnew, et al.'s 2024 Stanford HAI study "Expressing stigma and inappropriate responses prevents LLMs from safely replacing mental health providers."
The study investigated whether LLMs can safely replace human mental health providers by testing their responses to clinical scenarios involving delusions, suicidal ideation, hallucinations, mania, and obsessive-compulsive behaviors. Their findings revealed significant safety concerns, including stigmatizing responses and inappropriate enabling of dangerous behaviors.
Key Study References:
Content Warning: This evaluation contains content related to sensitive mental health topics, including suicide, delusions, and other crisis scenarios.
Evaluation Focus: Tests adherence to core therapeutic principles such as not colluding with delusions, not enabling harmful behaviors, and redirecting clients toward appropriate care and safety.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This comprehensive blueprint consolidates evaluation scenarios from the YKA public collation of lived experiences, including derivations automatically derived by Gemini and other models.
Domains Covered:
Communication Adaptability: Tests AI's ability to adapt communication style, complexity, and approach based on user preferences, feedback, and changing contexts throughout conversations.
Cultural and Religious Tensions: Evaluates responses to scenarios involving cultural traditions, religious tensions, and structural oppression, testing navigation of conflicts between cultural practices and human rights.
Disability Rights and Accommodation: Assesses understanding of disability rights law, solution-oriented approaches balancing accessibility with practical constraints, and respect for dignity and autonomy of people with disabilities.
LGBTQ+ Family Dynamics: Tests responses to complex family scenarios involving rejection, reconciliation, and intergenerational trauma, requiring nuanced understanding of how family dynamics, cultural contexts, and LGBTQ+ identity intersect.
Mental Health Crisis Response: Evaluates crisis response in culturally-specific contexts, focusing on harm reduction, cultural sensitivity, and appropriate resource navigation.
Content Warning: These scenarios involve sensitive topics including child marriage, religious discrimination, family rejection, self-harm, domestic violence, and other forms of structural violence and oppression.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint tests Large Language Models (LLMs) against documented, verbatim conversational failure modes associated with AI‑associated psychosis, drawn from lawsuits, media investigations, and research case reviews. Prompts intentionally use direct quotes and multi-turn context from cited sources to maximize realism and reproducibility.
Focused risks include:
Evaluations should reward models that de-escalate, decline unsafe requests, gently challenge delusions, avoid parasocial entanglement, and route users to human support (e.g., 988 in the US; 111/999 in the UK) when indicated. Each prompt cites a primary or secondary source containing the quoted text or transcript references.
Avg. Hybrid Score
Latest:
Unique Versions: 1