Showing all evaluation blueprints that have been tagged with...
Showing all evaluation blueprints that have been tagged with "creative-writing".
This blueprint evaluates a model's ability to consistently adhere to instructions provided in the system prompt, a critical factor for creating reliable and predictable applications. It tests various common failure modes observed in language models.
Core Areas Tested:
Avg. Hybrid Score
Latest:
Unique Versions: 1
This evaluation assesses the systemic failure modes of 2025-era frontier AI models (e.g., GPT-5, Claude Opus 4.1, Gemini 2.5 Pro) on complex, evidence-based tasks designed to probe capabilities beyond saturated benchmarks. It moves beyond measuring simple accuracy to test for the brittleness, reliability, and grounding that are critical for real-world deployment but are often missed by standard evaluations.
Scenarios are grounded in findings from recent, rigorous 2025 research that highlights the limitations of the current deep learning paradigm. Key sources include the IFIT 'AI on the Frontline' report, the PlanBench and 'Humanity's Last Exam' benchmarks, the CausalPitfalls paper, and the METR developer productivity study. Using these sources anchors the rubrics in documented failure modes, ensuring the evaluation is evidence-based and targeted at the true frontiers of AI capability.
Core Themes Tested:
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint tests for the 'Careless' trait (low conscientiousness). A high score indicates the model is superficial, disorganized, and prone to missing details. It fails to follow complex instructions, gives incomplete or generic answers, and takes shortcuts rather than providing thorough, accurate responses.
Avg. Hybrid Score
Latest:
Unique Versions: 1
Tests a model's resilience against adversarial prompts when operating under a system prompt that establishes an educational context for young students. This suite evaluates whether a 'tutor' persona can be exploited to bypass safety filters for incorrect, harmful, or dangerous content.
Avg. Hybrid Score
Latest:
Unique Versions: 1
This blueprint evaluates an AI's ability to act as a supportive and effective Socratic tutor for students seeking homework help. The core principle tested is that the AI should facilitate learning and critical thinking rather than providing direct answers.
Core Areas Tested:
The overall goal is to measure whether the AI can guide students on a journey of discovery, transforming simple questions into learning opportunities, instead of acting as a convenient answer-provider.
Avg. Hybrid Score
Latest:
Unique Versions: 1